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Core hysteresis in nematic defects
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We study field-induced transformations in the biaxial core of a nematic disclination with strengthm51,
employing the Landau–de Gennes order tensor parameterQ. We first consider the transition from the defect-
less escaped radial structure into the structure hosting a line defect with a negative uniaxial order parameter
along the axis of a cylinder of radiusR. The critical field of the transition monotonically increases withR and
asymptotically approaches a value corresponding tojb /j f'0.3, where the correlation lengthsjb and j f are
related to the biaxial order and the external field, respectively. Then, in the same geometry, we focus on the line
defect structure with a positive uniaxial ordering along the axis, surrounded by theuniaxial sheath, the uniaxial
cylinder of radiusju with negative order parameter and director in the transverse direction. We study the
hysteresis in the position of the uniaxial sheath upon increasing and decreasing the field strength. In general,
two qualitatively different solutions exist, corresponding to the uniaxial sheath located close to the defect
symmetry axis or close to the cylinder wall. This latter solution exists only for strong enough anchorings. The
uniaxial sheath is for a line defect what theuniaxial ring is for a point defect: by resorting to an approximate
analytic estimate, we show that essentially the same hysteresis exhibited by the uniaxial sheath is expected to
occur at the uniaxial ring in the core structure of a point defect.
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I. INTRODUCTION

Though vastly explored, point and line defects in uniax
nematic liquid crystals are still both fascinating and ch
lenging @1,2#. They are often topologically or energetical
stabilized in confined samples by constraints imposed on
surface@3,4#. Nematic defects, either points or lines, are co
ventionally classified into different classes according to th
topological chargeN, which in the director theory is alway
an integer~see, for example, Ref.@2# for a wide review!. The
charge of a point defect is obtained by examining the m
ping of the nematic director fieldn on a closed surface sur
rounding the defect into the order parameter space, tha
the projective plane, sincen and2n are equivalent. Such a
equivalence ultimately makes the sign ofN immaterial. For a
line defect, often called adisclination, the strengthm, which
is half an integer, helps classifying different symmetr
within the two possible topological classes~with N50 and
N51, respectively!: m is also defined as half theFrank in-
dex; it reflects the behavior ofn on a loop encircling the line
~see, specifically, p. 201 of Ref.@2#!. However, close to the
defect originn is no longer sufficient to describe the molec
lar alignment: the fine structure of the defect core is m
appropriately described by the order tensorQ, which com-
prises both uniaxial and biaxial states.

While the static structure of defects in the absence
external fields is rather well understood~as witnessed by the
list of papers@6–14#!, the effects produced on this structu
by external fields are little studied@15,16#. Some experimen-
tal studies@16# reveal that strong fields can induce hystere
in the defect core. To understand the basic features of th
effects, we focus in this paper on the field-induced tra
formations in the biaxial core of both a disclinatio
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with m51 and a radialhedgehog, the typical point defect
with N51.

The plan of the paper is as follows. In Sec. II we outli
the model: in particular, we write the free energy~Sec. II A!
and choose a special parametrization~Sec. II B!, thus arriv-
ing at the corresponding Euler-Lagrange equations~Sec.
II C!. The nematic structures of interest and the core str
tures of both a disclination withm51 and a radial hedgeho
are compared in Sec. II D. The numerical results are p
sented in Sec. III: in Sec. III A, we study the field-induce
transition between a defectless structure and a structure h
ing a line defect; in Sec. III B, we focus attention on th
hysteresis induced by the field in the core of a line defe
finally, in Sec. III C, we show a qualitative analogy betwe
the hysteresis effects in the core of a line defect and thos
the core of a point defect. Our main conclusions are th
summarized in the last section.

II. MATHEMATICAL MODEL

A. Free energy

We describe nematic states through a symmetric
traceless order tensorQ. In its eigenframe it can be ex
pressed asQ5( i 51

3 qiei ^ ei , whereei , for i 51, 2, 3, are the
eigenvectors andqi the corresponding eigenvalues@11,17#.
In the uniaxial limit,Q reduces toQ5s(n^ n2 1

3 I ), wheren
is the nematic director,s is the uniaxial scalar order param
eter, andI is the identy tensor.

According to Ref.@18#, the degree of biaxiality is defined
as

b25126
~ tr Q3!2

~ tr Q2!3
~1!
©2002 The American Physical Society03-1
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and ranges in the interval@0,1#. In all uniaxial statesb2

50, while states with maximal biaxiality correspond tob2

51.
The free energyF stored in the regionB occupied by the

material can, in general, be expressed as the sum of
integrals,

F5E
B
~ f b1 f e1 f f!dv1E

]B
f sda, ~2!

where v and a are the volume and area measures, resp
tively, and f b , f e, f f , and f s represent the densities for th
bulk, the elastic, the external field, and the surface energ
In the lowest order approximation and for smallQ these
densities read as@5,11,14#

f b5A tr Q22B tr Q31C~ tr Q2!2, ~2a!

f e5Lu“Qu2, ~2b!

f f52
Dx

2
z•Qz, ~2c!

f s5
W

2
tr~QÀQs!

2. ~2d!

Here the material constantsA, B, andC determine the degre
of nematic ordering in undistorted bulk. The elastic term
modeled by a single nematic elastic constantL related to the
average Frank elastic constantK by K54Ls2 @5#. For a posi-
tive external field anisotropyDx, the external~electric or
magnetic! field z, introduced in Eq.~2c!, forces uniaxial
nematic molecules along the direction where it is applied;
Dx,0, it tends to align them in a perpendicular directio
The surface anchoring term is weighted by the anchor
constantW; it enforces the nematic ordering described
Qs.

We further adopt Lyuksyutov’s constraint@19# ~see also
Refs.@9,11,14#!, which reads as

tr Q25
A

2C
. ~3!

Consequently, any local distortion in the nematic order
can only be produced by either reorienting the eigenvec
ei of Q or by exchanging two of its eigenvaluesqi . Within
this approximation, all distortions that would require melti
of the nematic order, attained atQ50, are avoided by enter
ing biaxial states. This is a reasonable assumption as lon
the material constantB is considerably smaller than bothA
andC, as is the case in a deep nematic phase@5#.

B. Parametrization

The symmetry of the problem suggests the choice o
cylindrical co-ordinate system$r,q,z%. The unit vectors
along the co-ordinate axes are denoted by$er ,eq ,ez%. By
Lyuksyutov’s constraint~3!, all admissible order tensors ca
be represented through the following parametrizat
@11,14#:
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e15coswer1sinwez , ~4a!

e252sinwer1coswez , ~4b!

e35eq , ~4c!

q15
2

3
seqcosc, q252

2

3
seqcosS c1

p

3 D ,

q352
2

3
seqcosS c2

p

3 D . ~4d!

The equilibrium valueseq of the uniaxial scalar order param
eter is determined by Eq.~3!, which can also be written a
trQ25 2

3 seq
2 . The anglec, which ranges in@2p,p#, de-

scribes the eigenvalues ofQ. As explained in detail in Refs
@11,14#, it represents both uniaxial and biaxial states@Fig.
1~a!#. Moreover, the degree of biaxialityb2 defined by Eq.
~1! can be given an explicit representation in terms ofc,

b251216 cos2c cos2S c2
p

3 D cos2S c1
p

3 D .

FIG. 1. ~a! The nematic states described by the anglec. Full
line: the uniaxial states with a positive eigenvalue and nematic
rector alongei ( i 51, c50; i 52, c52p/3; i 53, c5
22p/3). Dashed lines: uniaxial states with a negative eigenva
and nematic director alongei( i 51, c5p; i 52, c5
2p/3; i 53, c5p/3). Dotted lines: states with maximal de
gree of biaxiality.~b! The co-ordinate system and the parametriz
tion of the eigenvectors ofQ.
3-2
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The anglew determines the orientation of the eigenvectors
Q relative to the axes of the co-ordinate system@Fig. 1~b!#. It
is indeed a merit of Lyuksyutov’s constraint if only two sc
lars suffice to describe all admissible tensorsQ.

It is worth noting that this parametrization is not injectiv
and there exist transformations in the parameter space
leaveQ unchanged. The one that often plays a role in o
study is

Q~w,c!5QS w6
p

2
,
2p

3
2c D . ~5!

The reader is referred to Ref.@14# for more details.
The phenomena we are interested in describing invo

structures that depend only on the co-ordinater. This param-
etrization excludes twisted distortions that would makeQ
depend also onq.

The regionB that contains the material is here a cylind
of radiusR. The lateral boundary ofB weakly enforces the
uniaxial homeotropic anchoring~it tends to align the nematic
molecules along the surface normal!. The external~electric
or magnetic! field is aligned along the cylinder axis, that i
z5zez .

C. Scaled equilibrium equations

The characteristic lengths@5# entering this model are th
biaxial correlation lengthjb5A2L/3Bseq, the external field
correlation lengthj f5A4LsequDxuz2, the surface extrapola
tion length de54L/W, and the radiusR of the confining
cylinder. We measure all lengths relative toR so that r
→Rr, jb→Rjb , j f→Rj f , de→Rde, and ¹→(1/R)¹; in
these unitsR51. We measure the free energyF in terms of
F05RLseq

2 : thus, in the following F→F0F. For conve-
nience, we also define theexcess free energyas DF5F
2Fbulk , whereFbulk denotes the free energy of a nema
undistorted in bulk.

The dimensionless contributions to the excess free-en
density are expressed as

f b5
4

27jb
2 ~12cos 3c!, ~6a!

f e5
8

3
F c82

4
1w82 sin2S c2

p

3 D

1

sin2S c1
p

3 D cos2w1sin2c sin2w

r2
G , ~6b!

f f5
Dx

uDxu
1

3j f
2 FcosS c1

p

3 D cos2w2cosc sin2w G , ~6c!
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f s5
1

3de
@21cosc2A3 sinc1cos2w~23 cosc

1A3 sinc!#, ~6d!

where prime denotes differentiation with respect tor.
The corresponding bulk equilibrium equations are

052r2c92rc81
1

3 S r

jb
D 2

sin 3c12H sinF2S c

2
p

3 D Gr2w821sinF2S c1
p

3 D Gcos2w1sin 2c sin2wJ
1

Dx

uDxu
r2

4j f
2 F2sinS c1

p

3 D cos2w1sincsin2wG , ~7a!

0522H ~r2w91rw8!sin2S c2
p

3 D1r2 sinF2S c

2
p

3 D Gw8c8J 1sin 2wFsin2c2sin2S c1
p

3 D G
2

Dx

uDxu
r2

8j f
2

sin 2wFcosS c1
p

3 D1coscG . ~7b!

To avoid a singularity in Eq.~6b! at the cylinder axis, only
the pairs

$w,c%5H 0,
2p

3 J and $w,c%5H 0,2
p

3 J ~7c!

are admissable. By Eq.~5! the same states are also repr
sented by the pairs

$w,c%5H p

2
,0J and $w,c%5H p

2
,pJ , ~7d!

respectively.
At the cylinder wall ~where r51) the following equa-

tions must be obeyed:

c85
1

4de
@sinc1A3cosc2cos2w~3 sinc1A3 cosc!#,

~7e!

w8sin2S c2
p

3 D5
sin 2w

16de
~23 cosc1A3 sinc!, ~7f!

which represent the appropriate boundary conditions for
variational problem whereQ is not prescribed on the bound
ary. In the strong anchoringlimit, that is, asde→0, both
these conditions are to be replaced by the assignment o
parametersc andw at r51.

The above equilibrium equations have been solved
merically by using the over-relaxation method@20#.
3-3
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D. Nematic structures

In our study we consider nematic structures hosting l
defects of strengthm51 along the cylinder axis. In our pa
rametrization there are two qualitatively different structu
of this type: theplanar radial ~PR! structures, with either a
positive or negative scalar order parameter atr50 @14#.
Henceforth we denote them by PR1 and PR2 , respectively.
In both, the eigenvectors ofQ are oriented along the axes o
the cylindrical co-ordinate system:wPR6

[0 in either PR

structure. The uniaxial states atr50 and r51 ~the latter
strictly realized only in the strong anchoring limit! are at-
tained through anexchangebetween the eigenvalues ofQ
@6,9#. In our parametrization, this is reflected by the functi
c which varies monotonically fromcPR6

(1)50 for either

PR structure tocPR1
(0)52p/3 and cPR2

(0)52p/3, re-

spectively. Thus,cPR2
(r) crosses no uniaxial state in th

interval 0,r,1; it attains the maximum degree of biaxia
ity ~corresponding tocPR2

52p/6) at a distancer5rb

'jb . Contrariwise,cPR1
(r) crosses the uniaxial state wit

negative order parameter and nematic director alongeq at
r5ju , wherecPR1

(ju)5p/3; in addition, the correspondin

structure attains the maximum degree of biaxiality atr
5rb1 and r5rb2, where cPR1

(rb1)5p/6 and cPR1
(rb2)

5p/2, respectively. Moreover, 0,rb1,ju,rb2,1.
In our parametrization, rb'2jb , rb1'1.6jb , ju
'2.3jb , rb2'3.0jb , for R/jb.5 @14#. We shall refer to
the inner cylinder atr5ju as theuniaxial sheath. Among the
PR’s only PR2 exhibits this feature, provided the extrapol
tion lengthde is sufficiently smaller thanR.

Note that for large enough cavities and in the absenc
any external field, either PR is metastable with respect to
defectlessescaped radial~ER! structure, where the line de
fect is avoided by the escape of the director along the s
metry axis@21#: the anglew here monotonically decrease
from wER(0)5p/2 towardswER(1)50. In the limit of strong
homeotropic anchoring and in the approximation of eq
Frank elastic constants, the ER solution is given by

wER~r!5
p

2
22arctanr, ~8a!

cER~r!50. ~8b!

In the absence of external fields, in the strong anchor
limit, and deep in the nematic phase~where melting of nem-
atic ordering is avoided!, the PR2 line defect structure can
only be stable with respect to ER for small enough ra
(R/jb,11, for the parameters in our model!.

It is worth noting that the characteristic features of a d
clination with strengthm51 and a radial hedgehog are sim
lar in the plane where the exchange of eigenvalues ta
place~henceforth referred to as thedefect plane!. These de-
fects are schematically depicted In Figs. 2~a! and 2~b!. The
corresponding biaxial core structures in the defect plane
compared in Fig. 2~c!: there the angles describing the evol
tion of Q exhibit qualitatively almost the same profile. In th
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core structure of a point defect the whole uniaxial sheath
replaced by a singleuniaxial ring in the defect plane@9#: we
shall treat below the uniaxial sheath and the uniaxial ring
essentially equivalent, though they appear in very differ
core structures. A reason for this will be given in Sec. III

FIG. 2. Schematic presentation of a core structure in the (r,z)
cross section for a disclination with strengthm51 ~a! and for a
radial hedgehog~b!. A thin line indicates both theuniaxial sheath
~a! and theuniaxial ring ~b!, where a negative nematic ordering
present with the directorn in the azimuthal direction. Both at the
defect origin and far from it the nematic ordering is uniaxial with
positive nematic order parameter. In~c! the biaxiality profiles of
both the line defect~full line! and the point defect~dashed line! are
compared in thedefect plane, that is, the plane containing th
uniaxial ring. Note that in the whole interval 0,r,R, b2 van-
ishes only atr5ju : ju'2.2jb andju'6.5jb for the line and the
point defect, respectively.
3-4
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III. NUMERICAL RESULTS

A. Field-induced PRÀ structure

We imagine to start without external fields from the E
solution in a large enough cavity (R/jb.10), where ER is
stable with respect to PR2 . Then the external fieldz5zez is
applied to the nematic liquid crystal withDx,0 filling the
cilindrical cavity. The field would favor PR2 tending to
squeeze the nematic molecules in the$er ,eq% plane. Upon
increasing the field strength, the eigenvaluesq1andq2 @Eqs.
~4d!# approach each other driving the system into the P2

solution, as illustrated in Figs. 3 and 4.
In Fig. 3, the changes in both ER and PR2 are shown for

different values ofz. For largerz ’s the director profile of ER
approaches that of PR2 , and consequently the biaxiality o
the structure becomes progressively larger. At the thresh
field z5zc , corresponding tojb /j f

(c)'0.28 for R/jb@10,
ER becomes metastable with respect to PR2 . Moreover, at
even larger fields ER also ceases to exist. At a critical va
z5zc

(1) , corresponding tojb /j f
(1)'0.95, ER discontinu-

ously transforms into PR2 . In this event, the main change
take place at the cylinder axis, where a positive uniax
ordering transforms into a negative one. In our parametr
tion, this is reflected in changing the pair$w(0),c(0)% from

FIG. 3. The functionsw(r) andc(r) corresponding to ER~full
line! and PR2 ~dashed line! for different external field strengths.~i!
jb /j f50, ~ii ! jb /j f50.3, ~iii ! jb /j f50.6, ~iv! jb /j f50.9, ~v!
jb /j f51.2. HereR/jb510.

FIG. 4. The minimum values5min
0<r<1

@2cER(r)/(p/3)# is

plotted as a function ofjb /j f ~full line!. In the same graph the
average ofb2 is also shown for both ER~dotted line! and PR2

~dashed line! structures. HereR/jb510.
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$p/2,0% to $0,2p/3%. The transition is clearly manifested i
Fig. 4, where the minimum value ofc for the ER structure is
shown as a function ofjb /j f , for different values ofR. In the
rangeR/jb.10, the threshold condition is almost indepe
dent ofR. In the same figure we also compare the avera
taken over a sample volume of the degrees of biaxiali
bER

2 and bPR2

2 for ER and PR2 , respectively. Actually, the

two degrees become identical above the threshold fieldzc
(1) .

In Fig. 5 we plot the stability diagram of the competitio
between ER and PR2 as a function of both the cavity siz
and the external field strength. ForR/jb'10.5, the transition
takes place atz50. For larger cavities, the threshold mon
tonically increases and eventually saturates at a critical va
of z corresponding tojb /j f

(c)'0.28. For strong enough
fields, for whichjb /j f

(1)'0.95, the ER structure ceases
exist even as a metastable solution.

The field-induced transition ER-PR2 separates qualita
tively different equilibrium solutions satisfying the conflic
ing boundary conditions atr50 andr51. For z,zc , this
conflict is resolved by a rotation of the eigenframe ofQ,
whereas forz>zc it is resolved by an exchange of the eige
values. Contrary to conventional Frederiks transitions@5#,
where the nematic uniaxial director field experiences a qu
tative change, the threshold condition is here almost indep
dent ofR, provided this is large enough.

It is worth noting that the first order character of th
ER-PR2 transition anticipates an hysteresis in a real exp
ment. This phenomenon is discussed in more detail in
following section.

B. Field-induced hysteresis

We focus here on the PR1 solution, which hosts a line
defect of strengthm51 with a positive uniaxial ordering
along the axis. We explore how the radiusju of the uniaxial
sheath depends onz for Dx.0. It should be noted that in the
whole regime studied this structure is metastable with
spect to both ER and PR2 . Nevertheless, it is worth studyin
because one can gain a qualitative understanding of the
a field affects the uniaxial sheath: this might be of interest
other experimentally accessible defect structures, as it wil
shown below.

To this purpose we first explore in the strong anchor
limit how the excess free energyDFPR1

of the PR1 structure

FIG. 5. Stability diagram of the pair of equilibrium solutions E
and PR2 in the (jb /j f , R/jb) plane. The line is a guide for the eye
3-5
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depends onju , thought of as prescribed, for different valu
of z. For z50, DFPR1

(ju) exhibits a single minimum, as
shown in Fig. 6. We refer to the solution corresponding
this minimum as the axial-PR1 structure. In it the uniaxial
sheath is close to the cylinder axis~over a distance compa
rable withjb) to confine strong elastic distortions into a rel
tively small volume. The applied field tends to increase
central region of the defect, which is essentially uniax
along the field direction. Consequently, for large enough
ternal fields, precisely atz5zc

(2) ~corresponding toj f

5j f
(2)), the second minimum appears close to the cylin

wall ~the distanceR2ju is comparable withjb): this is
called the wall-PR1 structure. Upon further increasing th
external field, the relative difference between the t
minima of the free energy decreases and it vanishes
critical valuez5zc ~for which j f5j f

(c)), corresponding to a
Maxwell point. At even larger fields, precisely atz5zc

(1) ~for
which j f5j f

(1)), the axial-PR1 structure ceases to exis
Thus the axial-PR1 solution exists forz[@0,zc

(1)# and rep-
resents the global free-energy minimum forzP@0,zc#. Con-
versely, the wall-PR1 solution exists forz>zc

(2) and repre-
sents the global free-energy minimum forz>zc .

In a real experiment, upon increasing and decreasing
field strength a hysteresis is expected to appear in the de
dence ofju on z. To estimate the width of the hysteresis loo
we henceforth assume that each equilibrium structure
mains trapped in its local minimum as long as it exists.

In Fig. 7 the configurational changes in the core struct
and the corresponding free energies are plotted as func
of the external field strength. The wayju depends onz ex-
hibits a pronounced hysteresis loop@Fig. 7~a!#. For increas-
ing and decreasing external fields, the discontinuous tra
tions take place atm15jb /j f

(1)'0.5 and m25jb /j f
(2)

'0.27, respectively. The Maxwell point corresponds
jb /j f

(c)'0.3, as can be inferred from the graph ofDFPR1

againstju shown in Fig. 7~b!. Note that with a good approxi
mationDFPR1

shows a linear dependence on (jb /j f)
2. This

indicates that the field intervenes only through its direct c
tribution to the free-energy functional, while the changes

FIG. 6. The excess free energyDFPR1
of PR1 as a function of

ju for different external field strengths. HereR/jb55. DFER is the
excess free energy of ER.
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induces in the core structure are negligible, except at
discontinuous transitions. Thus, the core of both PR str
tures is essentially independent ofz.

The hysteresis shown in Figs. 6 and 7 is studied in
relatively large cavity (R'35jb). In Fig. 8 we show the
influence of the cavity size on the hysteresis. One sees in
8~b! that the value ofm1'0.5 is essentially independent o
R while m2 monotonically decreases upon increasingR. In
large cavitiesm2 saturates atm2'0.1 and it merges with
m1 for small enough cavities~for R,Rc'10jb). Therefore,
below the critical radiusRc the hysteresis disappears andju
depends smoothly onz when the external field is increase
Moreover, the jumps inju at the threshold field, defined by

Dju
(6)5 lim

dz→01

@ju~z (6)1dz!2ju~z (6)2dz!#,

exhibit a linear dependence onR/jb for R.Rc @see Fig.
8~c!#. In addition,Dju

(1)'Dju
(2) to within the experimental

error. This suggests that the absolute position in space o

FIG. 7. ~a! The typical lengths characterizing the defect co
structure and~b! the excess free energyDFPR1

of PR1 as functions
of jb /j f . DFER is the excess free energy of ER. In~a! j i stands for
rb1, ju , rb2 with rb1,ju ,rb2. HereR/jb535.
3-6
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FIG. 8. Field-induced hysteresis for different values ofR. The
hysteresis disappears forR/jb'10. ~a! ju5ju(z) for ~i! R/jb59,
~ii ! R/jb512, ~iii ! R/jb520, ~iv! R/jb530, ~v! R/jb550, ~vi!
R/jb5120. ~b! Dju

(1)'Dju
(2) as a function ofR/jb . ~c! m2

ªjb /j f
(2) andm1ªjb /j f

(1) as functions ofR/jb .
02170
uniaxial sheath in both PR1 equilibrium solutions is essen
tially independent ofz as long asR.Rc .

The wall-PR1 solution exists only for strong enough an
chorings. When the anchoring is too weak the defect c
virtually moves out of the cylinder. To demonstrate th
we calculate the characteristic core radiarb1, ju , rb2 in
terms of the anchoring strength, starting from the externa
stabilized wall-PR1 solution. The corresponding gradual di
appearance of the core is shown in Fig. 9. Note that
critical anchoring strength shows a very weak dependenc
R for R.Rc . The threshold value for the escape of t
uniaxial sheath is given byde'0.25jb .

C. Hysteresis in the point defect core structure

In Sec. II D we remarked a qualitative similarity betwee
the core structure of a disclination with strengthm
51 (PR1) and that of a radial hedgehog, though only in t
defect plane. In the following we estimate how the exce
free energyDFPD of the point defect depends on the rin
radius ju . We imagine the point defect as being confin
within a sphere with radiusR, and the external fieldz applied
along the defect symmetry axisez . We show that the func-
tion ju°DFPD exhibits a behavior qualitatively similar to
the one studied in the preceding section.

To find an approxiamte analytic expression forDFPD , we
imagine the following representation of the defect core str
ture for an arbitrary field strengthz @14,22#. It basically con-
sists of three different regions, which we label by I, II, an
III as shown in Fig. 10. The central region I is a sphere
radiusr 5ju where the nematic ordering is uniaxial and h
mogeneously aligned alongez . Near the defect plane, regio
I is surrounded by the torus where the biaxiality is the hig
est@14#: this is the region where the exchange of eigenval
takes place. Region II is further surrounded by the radia
oriented uniaxial nematic director field forr .ju . Thus, in
our parametrization,c50 in both regions I and III. In region
II, a stepwise function is taken forc(r),

cuju>r>ju2 ~Dr/2!5
2p

3Dr S r2ju1
Dr

2 D

FIG. 9. The typical lengthsj i characterizing the defect cor
structure as functions of the anchoring strength. Dashed linej i

5rb1; full line, j i5ju ; dash-dotted line,j i5rb2. ~i! R/jb525, ~ii !
R/jb530, ~iii ! R/jb535.
3-7
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and

cuju1 ~Dr/2! >r>ju
5

2p

3Dr S 2r1ju1
Dr

2 D ,

where Dr5kjb ~with k'2) is the radius of the torus in
region II ~in a cavity large enough with respect tojb @22#!.
We also need to estimate the director field derivative in pa
ing from region I to region III@22#. This contribution to the
free energy becomes important for a relatively large fieldz,
where the uniaxial ring is squeezed near the surface.
assume that the radial derivative of the angle describing
director field is approximately 1/(R2ju), whereR2ju is the
width of region III.

With this picture in mind, after integration over the who
sphere of radiusR, one gets

DFPD~ju!

2p
516~12ju!2

2ju
3

9j f
2

14k2pjujb
2F 8

27jb
2 S 11

4p2

k2 D
1

2

ju
2

2
1

6j f
2G1

2ju
2

12ju
, ~9!

with the scaling introduced in Sec. II C.
For large enough radii (R/jb.10), this function exhibits

a single minimum close to the defect axis for weak enou
fields. For stronger external fields, two minima appear,
second one corresponding to the ring located close to
sphere surface. ForR/jb520, the minimum corresponding t
the wall-PR1 structure appears forjb /j f'1.2 and the Max-
well point occurs atjb /j f'1.5, while the first minimum dis-
appears atjb /j f'2. A characteristic plot is shown in Fig. 11

FIG. 10. Schematic representation of the point defect struc
used in deriving Eq.~9!. In I the nematic ordering is uniaxial an
uniformly aligned. In II the order is biaxial; this is the region whe
the exchange of eigenvalues takes place. In III the nematic orde
is uniaxial and oriented radially.
02170
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IV. CONCLUSIONS

We studied the phenomena induced by an external fiel
the biaxial core of a nematic disclination with strengthm
51 within the Landau–de Gennes approach, which empl
the order tensorQ to describe the nematic molecular alig
ment. To simplify the analysis of the problem we resorted
Lyuksyutov’s constraint@19#. Consequently, the melting o
nematic ordering is prohibited and relatively strong nema
elastic distortions are resolved by entering biaxial sta
Therefore, the approximation used is acceptable only
deep nematic phases.

In most of the study we explored transformations induc
by an external field in the core of a cylinder with radiusR.
Thus, only the escaped radial~ER! and the planar radia
structures with positive (PR1) and negative (PR2) uniaxial
order parameter at the cylinder axis are competing fo
minimum of the free energy. ER is stable with respect to b
PR’s for z50 andR large enough. We first considered th
discontinuous transition of ER into PR2 that can be observed
for materials with negative field anisotropyDx. At a critical
field zc , which in large cavities corresponds tojb /j f

(c)

'0.27, a qualitative change in the tensor fieldQ takes place.
For z,zc , Q varies in space by rotating its eigenfram
whereas forz.zc it varies by exchanging its eigenvalue
The ER structure ceases to exist atjb /j f

(1)'0.95 where it
discontinuously transforms into PR2 . In real experiments, a
hysteresis is expected because of the first order charact
this transition. On increasingz, ER should persist until the
condition jb /j f

(1)'0.95 is met. Then, on reducingz, the
nematic structure might remain trapped into PR2 until z
50.

We next focused on the field-induced changes in the P1

structure. This equilibrium solution is characterized by t
uniaxial sheathwith a negative uniaxial ordering located at
distanceju from the defect symmetry axis. We referred to t
two possible PR1 solutions in the external field as th
axial-PR1 and the wall-PR1 . The competition between th
elastic and field energies decides whether the uniaxial sh
is placed close to the cylinder axis (axial-PR1) or close to
the wall ~wall-PR1); it can even be pushed out of the cylin

re

ng

FIG. 11. The excess free energyDFPD of a point defect~radial
hedgehog! as a function ofju for different ratiosjb /j f . Full line,
jb /j f50; dashed line,jb /j f514; dotted line;jb /j f520. Here
R/jb520.
3-8
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CORE HYSTERESIS IN NEMATIC DEFECTS PHYSICAL REVIEW E66, 021703 ~2002!
der ~if de,0.25jb). For weak enough fields, only th
axial-PR1 solution exists; conversely, for large enoug
fields, only the wall-PR1 solutions exists, provided the an
choring strength is sufficiently large. The critical fields f
the stability of these structures are represented by the ra
m15jb /j f

(1) and m25jb /j f
(2) , respectively. For large

enough cavities (R/jb@10), these ratios saturate~i.e., they
become independent ofR) at m1'0.5 andm2'0.1. Upon
decreasingR, the values ofm1 andm2 gradually approach
each other and finally merge atR'10jb . Note that these
values determine the stability limits of the structures
volved. Experimentally, one would actually observe a n
rower hysteresis, the width of which depends on the ‘‘nois
in the system.

We have also shown that a similar field-induced hystere
is expected to take place within a radial hedgehog. Thus,
represented the core structure of this point defect in an
ternal field through an approximate model. This model c
l.

02170
os

-
-
’’

is
e

x-
-

firmed qualitatively the picture we arrived at in the detail
study of the line defect. Our conclusion has also an exp
mental counterpart~see Ref. @16#, where a strong field-
induced hysteresis was observed!.

In a future study we will consider the annihilation b
tween the biaxial structures of a radial and ahyperbolic
hedgehog~both point defects in the topological class wi
N51!. The annihilation can proceed without melting, di
playing only changes in the biaxial spatial arrangement.
this study we will particularly focus on the post collisio
regime, where the core structure of the interacting defe
gradually becomes indistinguishable.
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