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Core hysteresis in nematic defects
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We study field-induced transformations in the biaxial core of a nematic disclination with strengfh
employing the Landau—de Gennes order tensor parar@etédfe first consider the transition from the defect-
less escaped radial structure into the structure hosting a line defect with a negative uniaxial order parameter
along the axis of a cylinder of radii& The critical field of the transition monotonically increases vitnd
asymptotically approaches a value corresponding,t@;~ 0.3, where the correlation lengtldg and ¢; are
related to the biaxial order and the external field, respectively. Then, in the same geometry, we focus on the line
defect structure with a positive uniaxial ordering along the axis, surrounded lyidwdal sheaththe uniaxial
cylinder of radius¢, with negative order parameter and director in the transverse direction. We study the
hysteresis in the position of the uniaxial sheath upon increasing and decreasing the field strength. In general,
two qualitatively different solutions exist, corresponding to the uniaxial sheath located close to the defect
symmetry axis or close to the cylinder wall. This latter solution exists only for strong enough anchorings. The
uniaxial sheath is for a line defect what theiaxial ring is for a point defect: by resorting to an approximate
analytic estimate, we show that essentially the same hysteresis exhibited by the uniaxial sheath is expected to
occur at the uniaxial ring in the core structure of a point defect.
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. INTRODUCTION with m=1 and a radiahedgehogthe typical point defect
with N=1.

Though vastly explored, point and line defects in uniaxial  The plan of the paper is as follows. In Sec. Il we outline
nematic liquid crystals are still both fascinating and chal-the model: in particular, we write the free ener@ec. 11 A
lenging[1,2]. They are often topologically or energetically and choose a special parametrizati®ec. Il B), thus arriv-
stabilized in confined samples by constraints imposed on thing at the corresponding Euler-Lagrange equati¢sc.
surface 3,4]. Nematic defects, either points or lines, are con-Il C). The nematic structures of interest and the core struc-
ventionally classified into different classes according to theitures of both a disclination witm=1 and a radial hedgehog
topological chargeN, which in the director theory is always are compared in Sec. [ID. The numerical results are pre-
an integer(see, for example, Reffi2] for a wide review. The  sented in Sec. lll: in Sec. lll A, we study the field-induced
charge of a point defect is obtained by examining the maptransition between a defectless structure and a structure host-
ping of the nematic director field on a closed surface sur- ing a line defect; in Sec. IlIB, we focus attention on the
rounding the defect into the order parameter space, that i§ysteresis induced by the field in the core of a line defect;
the projective plane, sinaeand —n are equivalent. Such an finally, in Sec. Il C, we show a qualitative analogy between
equivalence ultimately makes the sign\fmmaterial. For a the hysteresis effgcts in the core of a line defe(;t and those in
line defect, often called disclination the strengthm, which the core of a point defect. Our main conclusions are then
is half an integer, helps classifying different symmetriessummar'zed in the last section.
within the two possible topological classesith N=0 and
N=1, respectively mis also defined as half thérank in- Il. MATHEMATICAL MODEL
dex it reflects the behavior af on a loop encircling the line
(see, specifically, p. 201 of Ref2]). However, close to the
defect originn is no longer sufficient to describe the molecu- We describe nematic states through a symmetric and
lar alignment: the fine structure of the defect core is mordraceless order tensd®. In its eigenframe it can be ex-
appropriately described by the order ten€yrwhich com-  pressed aQ=37_,qe®e, wheree , fori=1, 2, 3, are the
prises both uniaxial and biaxial states. eigenvectors and;; the corresponding eigenvalugsl,17].

While the static structure of defects in the absence ofn the uniaxial limit,Q reduces t@Q=s(n@n— 31), wheren
external fields is rather well understotas witnessed by the IS the nematic directos is the uniaxial scalar order param-
list of paperg6—14)), the effects produced on this structure eter, and is the identy tensor.
by external fields are little studigd5,16). Some experimen- ~ According to Ref[18], the degree of biaxiality is defined
tal studieqd 16] reveal that strong fields can induce hysteresisaS
in the defect core. To understand the basic features of these 3.2
effects, we focus in this paper on the field-induced trans- 2_1_6(”Q ) 1)

A. Free energy

formations in the biaxial core of both a disclination (trQ?)3
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and ranges in the interv4l0,1]. In all uniaxial states3? (a)
=0, while states with maximal biaxiality correspond /83
=1.

The free energy stored in the regio8 occupied by the
material can, in general, be expressed as the sum of two
integrals,

sz (fb+fe+ff)dv+f fda, @)
B B

wherev and a are the volume and area measures, respec-
tively, andfy, fo, f;, andfg represent the densities for the
bulk, the elastic, the external field, and the surface energies.
In the lowest order approximation and for smé@ll these
densities read g%,11,14

fo=AtrQ?—BtrQ3+ C(tr Q?)?2, (2a)
fe=L|VQI%, (2b)
Ax
fi=—54QL (29 ©;
A €1
w , €2
f=5 1(Q—QJ% (2d)
2
Here the material constards B, andC determine the degree > e
of nematic ordering in undistorted bulk. The elastic term is P

modeled by a single nematic elastic constamélated to the
average Frank elastic constahby K =4Ls? [5]. For a posi-
tive extgrngl field -anlsotrop)A_X, the external(electr!c O lector alonge (i=1, ¢=0: i=2, y=2m3: (=3, =
magngtlc) field ¢, introduced ',n EQ'(ZC)' forge_s un|a?<|al —2m/3). Dashed lines: uniaxial states with a negative eigenvalue
nematic molecules along the direction where it is applied; for, 4 nematic  director alonge(i=1, ¢=m i=2, ¢=
Ax<0, it tends to align them in a perpendicular direction. _ /3. =3, y=/3). Dotted lines: states with maximal de-

The surface anchoring term is weighted by the anchoringree of biaxiality.(b) The co-ordinate system and the parametriza-
constantW; it enforces the nematic ordering described bytion of the eigenvectors .

FIG. 1. (&) The nematic states described by the angleFull
line: the uniaxial states with a positive eigenvalue and nematic di-

Qs.
We further adopt Lyuksyutov’s constraifit9] (see also €, = CoSpe, + Sinpe, (4a)
Refs.[9,11,14), which reads as g
A €= —singe,+Ccospe,, (4b)
trQ’=-=. 3
O ac 9 - (49
Consequently, any local distortion in the nematic ordering 2 .
can only be produced by either reorienting the eigenvectors qlzgsecpos(,//, qo=— §SeqCOS< Y+ 3/
e of Q or by exchanging two of its eigenvalugg. Within
this approximation, all distortions that would require melting 2 -
of the nematic order, attained @t=0, are avoided by enter- Os=— §Seq00§< v— 3/ (4d)

ing biaxial states. This is a reasonable assumption as long as
the material constarB is considerably smaller than both

. . ; The equilibrium values,, of the uniaxial scalar order param-
andC, as is the case in a deep nematic pHage g ed P

eter is determined by Ed3), which can also be written as
trQ2=§s§q. The angley, which ranges in[ —, ], de-
scribes the eigenvalues . As explained in detail in Refs.

The symmetry of the problem suggests the choice of 411,14, it represents both uniaxial and biaxial staf€%g.
cylindrical co-ordinate systendp,®,z}. The unit vectors 1(a)]. Moreover, the degree of biaxialitg? defined by Eq.
along the co-ordinate axes are denoted{by,e,,e,}. By (1) can be given an explicit representation in termsjof
Lyuksyutov’s constraint3), all admissible order tensors can
be represented through the following parametrization
[11,14:

B. Parametrization

B2=1—16 cody cos?( - g) cod| Y+ g
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The anglep determines the orientation of the eigenvectors of
Q relative to the axes of the co-ordinate sysféfig. 1(b)]. It
is indeed a merit of Lyuksyutov’s constraint if only two sca-
lars suffice to describe all admissible tens@rs

It is worth noting that this parametrization is not injective

and there exist transformations in the parameter space th@ere prime denotes differentiation with respecpto

1
fo=gq [2+cosy— 3 sing+coLe( — 3 cosyr
e

++/3siny)], (6d)

leave Q unchanged. The one that often plays a role in our

study is

2 )
,?_'ﬁ . )

N

Q((P,t//)=Q(<Pt

The reader is referred to Réfl4] for more details.

The phenomena we are interested in describing involve

structures that depend only on the co-ordinat&his param-
etrization excludes twisted distortions that would ma@e
depend also or}.

The regionB that contains the material is here a cylinder

of radiusR. The lateral boundary oB weakly enforces the
uniaxial homeotropic anchoringf tends to align the nematic
molecules along the surface normarhe externalelectric
or magneti¢ field is aligned along the cylinder axis, that is,

{=1e,.

C. Scaled equilibrium equations

The characteristic lengti®] entering this model are the
biaxial correlation length,= y2L/3Bs., the external field
correlation lengthé;= \/4Lseq|AX|§2, the surface extrapola-
tion length d.=4L/W, and the radiuR of the confining
cylinder. We measure all lengths relative B so thatp
—Rp, &—REy, §—Ré, de—Rd,, andV—(1/R)V; in
these unitR=1. We measure the free energyin terms of
Fo=RLsg,: thus, in the following F—FgF. For conve-
nience, we also define thexcess free energgs AF=F

—Fpuk, WhereFg,x denotes the free energy of a nematic

undistorted in bulk.

The corresponding bulk equilibrium equations are

0= sin 2

2
%) sin3y+2

— g) }p2<p’2+sir{2

Ax p?
|Ax| ag?

2,1 ' 1
P mpYt g b

cog ¢+ sin 2y sirfe

aa
vt 3

—sin

4//+g cos?<p+sim,//sin2go}, (78

™

0=-2 3

+p?sin

(p2¢”+p<p')5in2( h— 2( o

Sl

Ax p* )
— —— ——=5sin2¢
|Ax| 8¢

Sirfy—sir?

aa
co lﬂ+§

To avoid a singularity in Eq(6b) at the cylinder axis, only
the pairs

+5sin 2¢

K
3

+cosy|. (7b)

oi=]oZ] i trt=o-Z] o

are admissable. By Ed5) the same states are also repre-
sented by the pairs

{¢,¢}=[§,0) and {so,w}:(;w], (79

The dimensionless contributions to the excess free-energy

density are expressed as

4
szygg(l—cos&//), (6a)
12
g Y retsifl -
sir? w—i-g coS o+ sirfy sirfe
n . , (6b)
p
A 1
f:ﬁs—&z cos( zp+g cosch—coswsinch}, (60)

respectively.
At the cylinder wall (where p=1) the following equa-
tions must be obeyed:

Y= %[sin i+ \3cosy—cof (3 sing+ 3 cosy)],
¢ (7¢)

sin 2¢

~ 16d, (70

(—3 cosy+ /3 siny),

(p'sinz( h— %) =

which represent the appropriate boundary conditions for this
variational problem wher® is not prescribed on the bound-
ary. In thestrong anchoringlimit, that is, asde—0, both
these conditions are to be replaced by the assignment of the
parameters) and ¢ atp=1.

The above equilibrium equations have been solved nu-
merically by using the over-relaxation meth@D].
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D. Nematic structures (a)

In our study we consider nematic structures hosting line
defects of strengtm=1 along the cylinder axis. In our pa- - I\.
rametrization there are two qualitatively different structures T
of this type: theplanar radial (PR) structures, with either a
positive or negative scalar order parameterpatO [14].
Henceforth we denote them by PRind PR , respectively.
In both, the eigenvectors @ are oriented along the axes of
the cylindrical co-ordinate systemppr =0 in either PR

structure. The uniaxial states a=0 andp=1 (the latter
strictly realized only in the strong anchoring limiare at-
tained through arexchangebetween the eigenvalues &f
[6,9]. In our parametrization, this is reflected by the function
 which varies monotonically fromjpg (1)=0 for either

PR structure toypg (0)=27/3 and ¢pr (0)=— /3, re- (b)
spectively. Thusypr (p) crosses no uniaxial state in the ‘

interval 0<p<1; it attains the maximum degree of biaxial-
ity (corresponding toypr =—w/6) at a distancep=py \

~&. Contrariwise,gz/p&(p) crosses the uniaxial state with .

negative order parameter and nematic director alenat
p=E&,, wherez/;pR+(§u)= 7/3; in addition, the corresponding - e i e -
structure attains the maximum degree of biaxiality pat

= o1 and p=pp,, Where g (po) = /6 and ypr, (poo) .

=/2, respectively. Moreover, <Dpy,<E<pp<l. / \

In  our parametrization, pp~2¢&,, pm~1.6&, &, ‘

~2.3¢,, ppr~3.05,, for R/I&,>5 [14]. We shall refer to

the inner cylinder ap = ¢, as theuniaxial sheathAmong the

PR'’s only PR exhibits this feature, provided the extrapola- (C)

tion lengthd, is sufficiently smaller thaiRr.

Note that for large enough cavities and in the absence of
any external field, either PR is metastable with respect to the
defectlessescaped radialER) structure, where the line de-
fect is avoided by the escape of the director along the sym-
metry axis[21]: the anglee here monotonically decreases
from @gr(0)= 7/2 towardspgr(1)=0. In the limit of strong
homeotropic anchoring and in the approximation of equal
Frank elastic constants, the ER solution is given by

pi&,

T
Per(p) = E—Zarctalp, (8a FIG. 2. Schematic presentation of a core structure in the)(
cross section for a disclination with strengti=1 (a) and for a
radial hedgehodb). A thin line indicates both theniaxial sheath

Yer(p)=0. (8b) (a) and theuniaxial ring (b), where a negative nematic ordering is

present with the directon in the azimuthal direction. Both at the

In the absence of external fields, in the strong anchoringlefect origin and far from it the nematic ordering is uniaxial with a
limit, and deep in the nematic phagehere melting of nem- positive nematic order parameter. (0 the biaxiality profiles of

atic ordering is avoided the PR line defect structure can P0th the line defectfull line) and the point defeddashed lingare
only be stable with respect to ER for small enough radiicompared in thedefect plane that is, the plane containing the
uniaxial ring. Note that in the whole intervakQp<R, A2 van-

(R/¢,<11, for the parameters in our modlel . .
) . . . ishes only app=§,: &£,~2.2f, and §,~6.5¢, for the line and the
It is worth noting that the characteristic features of a dis noint defect, respectively.

clination with strengthim=1 and a radial hedgehog are simi-
lar in the plane where the exchange of eigenvalues takes

place (henceforth referred to as tliefect plang These de- core structure of a point defect the whole uniaxial sheath is
fects are schematically depicted In Figéa)2and 2Zb). The replaced by a singlaniaxial ring in the defect plang9]: we
corresponding biaxial core structures in the defect plane arghall treat below the uniaxial sheath and the uniaxial ring as
compared in Fig. @): there the angles describing the evolu- essentially equivalent, though they appear in very different
tion of Q exhibit qualitatively almost the same profile. In the core structures. A reason for this will be given in Sec. Il C.
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FIG. 3. The functiongp(p) and¢(p) corresponding to ERfull
line) and PR (dashed lingfor different external field strength§)
fb/§f= 0, (||) fblgfz 03, (||| ) gbléf: 06, (|V) gblgf: 09, (V)
&,/&=1.2. HereR/ £,=10.

I1I. NUMERICAL RESULTS
A. Field-induced PR_ structure

PHYSICAL REVIEW &6, 021703 (2002
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FIG. 5. Stability diagram of the pair of equilibrium solutions ER
and PR in the (§,/&;, R/&p) plane. The line is a guide for the eye.

{m/2,0} to {0,— =/3}. The transition is clearly manifested in
Fig. 4, where the minimum value @f for the ER structure is
shown as a function dof,/&;, for different values oR. In the
rangeR/&,>10, the threshold condition is almost indepen-
dent of R In the same figure we also compare the averages

We imagine to start without external fields from the ER taken over a sample volume of the degrees of biaxialities

solution in a large enough cavityR(&,>10), where ER is
stable with respect to PR Then the external field= (e, is
applied to the nematic liquid crystal with y<<O filling the
cilindrical cavity. The field would favor PR tending to
squeeze the nematic molecules in {l8s,ey} plane. Upon
increasing the field strength, the eigenvalggandq, [Egs.

(4d)] approach each other driving the system into the PR

solution, as illustrated in Figs. 3 and 4.
In Fig. 3, the changes in both ER and PRre shown for
different values of. For larger{’s the director profile of ER

approaches that of PR and consequently the biaxiality of
the structure becomes progressively larger. At the thresholﬁlv

field {=¢,, corresponding tog,/£9~0.28 for R/&,> 10,
ER becomes metastable with respect to_PRMoreover, at

even larger fields ER also ceases to exist. At a critical valu

¢=¢{") | corresponding tog,/£{")~0.95, ER discontinu-

BEr and B3z for ER and PR, respectively. Actually, the

two degrees become identical above the threshold #gldi.

In Fig. 5 we plot the stability diagram of the competition
between ER and PRas a function of both the cavity size
and the external field strength. F&f&,~10.5, the transition
takes place at=0. For larger cavities, the threshold mono-
tonically increases and eventually saturates at a critical value
of ¢ corresponding to&,/&9~0.28. For strong enough
fields, for which&,/&")~0.95, the ER structure ceases to
exist even as a metastable solution.

The field-induced transition ER-PRseparates qualita-
ely different equilibrium solutions satisfying the conflict-
ing boundary conditions gi=0 andp=1. For {<{,, this
conflict is resolved by a rotation of the eigenframe @f

Whereas for= . itis resolved by an exchange of the eigen-

values. Contrary to conventional Frederiks transitipf}

ously transforms into PR. In this event, the main changes ynere the nematic uniaxial director field experiences a quali-

take place at the cylinder axis, where a positive uniaxiakative change, the threshold condition is here almost indepen-
ordering transforms into a negative one. In our parametrizagent ofR, provided this is large enough.

tion, this is reflected in changing the p&ip(0),#(0)} from

1.0
0.8+

0.6

N

FIG. 4. The minimum valuer= minOspgl[—l//ER(p)/(’TT/3)] is

plotted as a function ot,/¢& (full line). In the same graph the
average ofB? is also shown for both ERdotted ling and PR
(dashed ling structures. Her&/&,=10.

It is worth noting that the first order character of the
ER-PR_ transition anticipates an hysteresis in a real experi-
ment. This phenomenon is discussed in more detail in the
following section.

B. Field-induced hysteresis

We focus here on the PRsolution, which hosts a line
defect of strengthm=1 with a positive uniaxial ordering
along the axis. We explore how the radi§sof the uniaxial
sheath depends anfor A x>0. It should be noted that in the
whole regime studied this structure is metastable with re-
spect to both ER and PR Nevertheless, it is worth studying
because one can gain a qualitative understanding of the way
a field affects the uniaxial sheath: this might be of interest for
other experimentally accessible defect structures, as it will be
shown below.

To this purpose we first explore in the strong anchoring
limit how the excess free energyFpg, of the PR structure
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FIG. 6. The excess free energyFpr, of PR, as a function of /&,
&, for different external field strengths. HeRé,=5. AFgr is the
excess free energy of ER. (‘b)

depends org,, thought of as prescribed, for different values
of {. For{=0, AFpg (&,) exhibits a single minimum, as
shown in Fig. 6. We refer to the solution corresponding to

this minimum as the axial-PRstructure. In it the uniaxial 8

sheath is close to the cylinder axisver a distance compa-

rable with&p) to confine strong elastic distortions into a rela-

. . . . & 41

tively small volume. The applied field tends to increase the u

central region of the defect, which is essentially uniaxial 5. )

along the field direction. Consequently, for large enough ex- u.ﬁ

ternal fields, precisely at=¢{") (corresponding tog; < 4.

=§§’)), the second minimum appears close to the cylinder

wall (the distanceR— ¢, is comparable withé,): this is -8+ . i .
called the wall-PR structure. Upon further increasing the 0.0 0.1 02 0.3
external field, the relative difference between the two €, /8, )

minima of the free energy decreases and it vanishes at a

critical valueZ= ¢ (for which &= £{9), correspondingto a  FIG. 7. (a) The typical lengths characterizing the defect core

Maxwell point At even larger fields, precisely 4t gg+> (for  structure andb) the excess free energyFpg 0f PR, as functions

which &=¢{")), the axial-PR structure ceases to exist. of &/& . AFggis the excess free energy of ER.(® & stands for

Thus the axial-PR solution exists for €[0,£{")] and rep-  Po1s &us po2 With ppr<&, <pp. HereR/§,=35.

resents the global free-energy minimum to£[0,.]. Con- ) o

versely, the wall-PR solution exists forz= ggf) and repre- m_duces_, in the core structure are negligible, except at the

sents the global free-energy minimum o .. dlscontlnuous Frangltlons. Thus, the core of both PR struc-
In a real experiment, upon increasing and decreasing th/rés is essentially independent of , o

field strength a hysteresis is expected to appear in the depen- '€ hysteresis shown in Figs. 6 and 7 is studied in a

dence of¢, on ¢. To estimate the width of the hysteresis loop '€latively large cavity R~35¢,). In Fig. 8 we show the

we henceforth assume that each equilibrium structure rePfluence of the cavity size on the hysteresis. One sees in Fig.

mains trapped in its local minimum as long as it exists. 8 that the value ofu, ~0.5 is essentially independent of
In Fig. 7 the configurational changes in the core structurd? While x_ monotonically decreases upon increasiign

and the corresponding free energies are plotted as functioh@fg€ cavitiesu_ saturates ap._~0.1 and it merges with

of the external field strength. The way depends ori ex-  #+ for small enough cavitiefor R<R.~10¢,). Therefore,

hibits a pronounced hysteresis lofffig. 7(a)]. For increas- Delow the critical radiuRX; the hysteresis disappears afid

ing and decreasing external fields, the discontinuous transfiéPends smoothly oft when the external field is increased.

tions take place afu,=&/&)~05 and u_=&,/&~)  Moreover, the jumps i, at the threshold field, defined by

~0.27, respectively. The Maxwell point corresponds to (=) _ i (+) _ (=) _

£,/69~0.3, as can be inferred from the graph &Fpg A&y _5;T:)+[§”(§ o0 = &(E = oD,

against¢, shown in Fig. Tb). Note that with a good approxi-

mationAFpg_shows a linear dependence ofy{¢;)°. This  exhibit a linear dependence d®/¢, for R>R, [see Fig.

indicates that the field intervenes only through its direct con8(c)]. In addition,A£{~A£(™) to within the experimental

tribution to the free-energy functional, while the changes iterror. This suggests that the absolute position in space of the
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FIG. 8. Field-induced hysteresis for different valuesRofThe
hysteresis disappears f&£,~10. (a) £,=£,(¢) for (i) R/&,=9,
(i) RIg=12, (iii) R/&,=20, (iv) R/I&=30, (v) R/&,=50, (vi)
R/&,=120. (b) A&(I~A¢g() as a function ofR/&,. (0) u_

=&l &7 and u, =&,/ as functions oR/&,.
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FIG. 9. The typical lengths; characterizing the defect core
structure as functions of the anchoring strength. Dashed §ne,
=pp1; fullline, &= ¢, ; dash-dotted line&;= py,,. (i) R/ &,= 25, (i)
R/ &,=30, (iii) R/ &,=35.

uniaxial sheath in both PRequilibrium solutions is essen-
tially independent of as long aR>R..

The wall-PR. solution exists only for strong enough an-
chorings. When the anchoring is too weak the defect core
virtually moves out of the cylinder. To demonstrate this
we calculate the characteristic core ragiga, &,, pp2in
terms of the anchoring strength, starting from the externally
stabilized wall-PR solution. The corresponding gradual dis-
appearance of the core is shown in Fig. 9. Note that the
critical anchoring strength shows a very weak dependence on
R for R>R.. The threshold value for the escape of the
uniaxial sheath is given bgl.~0.25,.

C. Hysteresis in the point defect core structure

In Sec. IID we remarked a qualitative similarity between
the core structure of a disclination with strength
=1 (PR,) and that of a radial hedgehog, though only in the
defect plane. In the following we estimate how the excess
free energyAFpp of the point defect depends on the ring
radius ¢£,. We imagine the point defect as being confined
within a sphere with radiuR, and the external field applied
along the defect symmetry axés. We show that the func-
tion £4—AFpp exhibits a behavior qualitatively similar to
the one studied in the preceding section.

To find an approxiamte analytic expression &df 5, we
imagine the following representation of the defect core struc-
ture for an arbitrary field strength[14,27. It basically con-
sists of three different regions, which we label by I, Il, and
Il as shown in Fig. 10. The central region | is a sphere of
radiusr = ¢, where the nematic ordering is uniaxial and ho-
mogeneously aligned alorgy. Near the defect plane, region
| is surrounded by the torus where the biaxiality is the high-
est[14]: this is the region where the exchange of eigenvalues
takes place. Region Il is further surrounded by the radially
oriented uniaxial nematic director field foe>&,. Thus, in
our parametrizationy= 0 in both regions | and Ill. In region
I, a stepwise function is taken fak(p),

2 Ap
| £ =p=€,~ (Apl2)= 3hp p—é&t >
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&, /R

FIG. 11. The excess free energ¥ pp of a point defec{radial
hedgehogas a function of¢, for different ratios&,/&;. Full line,
&,/1&=0; dashed line,&,/&=14; dotted line; &,/&=20. Here
R/ &,= 20.

FIG. 10. Schematic representation of the point defect structure
used in deriving Eq(9). In | the nematic ordering is uniaxial and IV. CONCLUSIONS
uniformly aligned. In Il the order is biaxial; this is the region where
the exchange of eigenvalues takes place. In 1ll the nematic ordering We studied the phenomena induced by an external field in

is uniaxial and oriented radially. the biaxial core of a nematic disclination with strength
=1 within the Landau—de Gennes approach, which employs
and the order tenso to describe the nematic molecular align-

ment. To simplify the analysis of the problem we resorted to
Lyuksyutov’s constrainf19]. Consequently, the melting of
2w Ap nematic ordering is prohibited and relatively strong nematic
‘/’|§u+ (Ap12)=p=E" 37 p _p+§u+7 ' elastic distortions are resolved by entering biaxial states.
Therefore, the approximation used is acceptable only for
deep nematic phases.
where Ap=Kk¢, (with k~2) is the radius of the torus in  In most of the study we explored transformations induced
region Il (in a cavity large enough with respect ég [22]). by an external field in the core of a cylinder with radigs
We also need to estimate the director field derivative in passthus, only the escaped radiéER) and the planar radial
ing from region | to region 11l[22]. This contribution to the  structures with positive (PR and negative (PR) uniaxial
free energy becomes important for a relatively large figld order parameter at the cylinder axis are competing for a
where the uniaxial ring is squeezed near the surface. Weinimum of the free energy. ER is stable with respect to both
assume that the radial derivative of the angle describing theR’s for /=0 andR large enough. We first considered the
director field is approximately 18— &), whereR— ¢, isthe  discontinuous transition of ER into PRhat can be observed

width of region IlI. for materials with negative field anisotrogyy. At a critical
With this picture in mind, after integration over the whole field 7;, which in large cavities corresponds t/&(9
sphere of radiu®, one gets ~0.27, a qualitative change in the tensor fi€ldakes place.

For (<., Q varies in space by rotating its eigenframe,
whereas for{> ¢, it varies by exchanging its eigenvalues.

AFpo(éw —16(1-¢)— 2_53+4sz§ 2l |1+ 4 The ER structure ceases to existégtf & ™)~0.95 where it
2m Yoog? 1*b 2722 k2 discontinuously transforms into PR In real experiments, a
hysteresis is expected because of the first order character of
2 1 2¢; this transition. On increasing, ER should persist until the
+?_6_§2 1-¢, ©  condition £,/&7)~0.95 is met. Then, on reducing, the
! f nematic structure might remain trapped into PRntil ¢
=0.
with the scaling introduced in Sec. Il C. We next focused on the field-induced changes in the PR

For large enough radiiR/ £,>10), this function exhibits  structure. This equilibrium solution is characterized by the
a single minimum close to the defect axis for weak enougtuniaxial sheathwith a negative uniaxial ordering located at a
fields. For stronger external fields, two minima appear, thalistancet, from the defect symmetry axis. We referred to the
second one corresponding to the ring located close to thevo possible PR solutions in the external field as the
sphere surface. F&t/ £,= 20, the minimum corresponding to axial-PR, and the wall-PR . The competition between the
the wall-PR, structure appears fdf,/ &~ 1.2 and the Max- elastic and field energies decides whether the uniaxial sheath
well point occurs at,/ &~ 1.5, while the first minimum dis- is placed close to the cylinder axis (axial-PRor close to
appears af,/ &~ 2. A characteristic plot is shown in Fig. 11. the wall (wall-PR,); it can even be pushed out of the cylin-
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der (if d.<0.25,). For weak enough fields, only the firmed qualitatively the picture we arrived at in the detailed
axial-PR. solution exists; conversely, for large enough study of the line defect. Our conclusion has also an experi-
fields, only the wall-PR solutions exists, provided the an- mental counterpar(see Ref.[16], where a strong field-
choring strength is sufficiently large. The critical fields for induced hysteresis was obseryed
the stability of these structures are represented by the ratios In @ future study we will consider the annihilation be-
wi=&l87) and u_=&,/&7), respectively. For large fween the biaxial structures of a radial andhgperbolic
enough cavities R/ &,>10), these ratios saturatee., they hedgehog(both point defects in the topploglcal cle_lss Wl.th
become independent &) at 4, ~0.5 andx_~0.1. Upon N=1). The ann|h|lat|o_n can p_roc_eed Wlt_hout melting, dis-
decreasingR, the values ofu, and u_ gradually approach plf’;\ylng only cha_nges in the biaxial spatial arrangement. In
each other and finally merge &<~10&,. Note that these thIS. study we will particularly focus on the post. collision
values determine the stability limits of the structures in-fédime, where the core structure of the interacting defects
volved. Experimentally, one would actually observe a nar-gradually becomes indistinguishable.
rower hysteresis, the width of which depends on the “noise”
in the system. o , ACKNOWLEDGMENTS
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